
Learning times of a perceptron that learns from examples

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 379

(http://iopscience.iop.org/0305-4470/27/2/021)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


~. . ~ ~ 

1. Phys. A Math. Gen. 27 (1994) 379-384. F'rinted in the UK 

Learning times of a perceptron that learns from examples 

J F Fontanaxit and Alba Them"$ 
t Instimto de Fisica e Ouimica de SZo Carlos. Universidade de SZo Paulo. Caixa Postal 369. 
i3560 sm carlos SP, Brazil 
iInstimt0 de Fisica. Universidade Federal do Rio Grande do SUI. Caixa Postal 15051. 91501 
Porta Alegre RS, Bradl 

Received 27 September 1993 

Abstract We calculate the distribution of learning times of the optimal stability perceptma 
algorithm of Krauth and M k d  (1987) for the leaning from noisy examples problem. In 
particolar, we find that in the case of noiseless examples the average total number of leaming 
steps d e s  with a2, whwe a is the training set size, although the number of examples that 
must effedively be learned tends to zero as a-'. 

The study of the learning and gendizauon capabilities of singlelaya perceptmns has 
undergone rapid progress since the seminal papers of Gardner (1988) and Gardner and 
Derrida (1988). One of the reasons for the success of the equilibrium statistical mechanics 
framework proposed in these papers is its independence from the algorithm used to train the 
neural network. This fact has allowed the full analysis of discreteweights neural networks 
for which an efficient training algorithm is not known (Gutfreund and Stein 1990, Meir 
and Fontanari 1992a) as well as the analysis of real-weights perceptrons for which the 
perceptron algorithm of Rosenblatt (1962) and its variants are guaranteed to converge to an 
optimal set of weights, provided it exists (Gardner and Demda 1988, Gyorgy and Tishby 
1989, Seung et uf 1992). On the other hand, the study of the dynamics of the learning 
process must necessarily depend on the training algorithm. Such a study has been carried 
out analytically for the hear perceptron by Krogh and Hertz (1992) where the dynamics 
of leaming is modelled by a Langevin equation. In a remarkable contribution, Opper 
(1988) has calculated analytically the distribution of leaming times for the optimal stability 
perceptron algorithm of Krauth and M.5" (1987), which can be used to train Boolean 
perceptrons. That analysis, however, was restricted to the random mapping problem, with 
the input pattems chosen as unbiased random variables. More recently, Wendemuth et al 
(1993) have extended Opper's calculations to biased input patterns. 

In this note we employ the formalism developed by Opper to calculate the distribution of 
learning times for the learning from examples problem (Gyorgy and Tihhy 1989, Seung eta1 
1992). In thii case, the input/output pairs aee also generated by a single-layer perceptron, 
so the algorithm is guaranteed to converge for all training set sizes, thus allowing the 
determination of the scaling of the learning time with the training set size. 

The neural network we consider in this note consists of N input units Si = *I 
(i = 1, . . . , N ) ,  N real-valued weights Wj and a single output unit 
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where we have used the notation a:. y = 
the mapping between the ZN possible input configurations E and their respective outputs 
generated by the so-called teacher perceptron 

J F Fontnnari and A Theumann 

xjyi .  The task of the perceptron is to realize 

We make no assumption on the nature of the weights Wf. 
The perceptron is then trained in a set consisting of P = CLN inputloutput pairs 

(examples) IS', Cf]  (1 = 1,. . . , P) where Cf is the teacher's output to input E' and each 
component Sj is drawn from the conditional probability distribution 

with 

P(&!) = $ s ( g  - 1) + ; SCE; + 1). (4) 

The input pattern is thus a noisy version of the pure pattem E'. The noise parameter 
0 6 y 6 1 allows the interpolation between the random mapping problem ( y  = 0), 
studied by Opper (1988), and the problem of learning from noiseless examples (y  = 1). 
The equilibrium properties of this neural network model have been studied by Gyorgy and 
Tishby (1989) who have shown that the storage capacity or, of the network increases with 
increasing y and diverges for y + 1. Moreover, they have shown that the generalization 
error , i.e. the probability of the network making an error in an example not belonging 
to the training set, tends to zero as CL-' for large LY and y = 1. A particularly relevant 
result demonstrated by these authors is the stability of the replica symmetric ansatz in the 
subcritical (or 6 or,) region. More specifically, they have shown that the stability line (de 
Almeida and Thouless 1978) coincides with the critical line for all y .  

The optimal stability perceptron algorithm of Krauth and MBzard (1987) is an iterative 
procedure to find the maximal value AOpt of the stability A > 0 such that 

W . q '  
4% 

-- A > O  , 1=1 ,  ..., P 

where qi = ('S: and IWI2 = N .  Starting with W = 0 the change in the weights at time t 
is 

(6) 

where l ( t )  is the label of the example such that W .  q ' is minimal. The algorithm stops at 
a certain time T when W ( T )  .q ' c for all 1 ,  where c is a fixed positive number. Krauth 
and Mkzard have shown that c/lWl -+ Aopc in the limit c -+ 00. This optimality has 
made possible the analytical calculation of the distribution of learning times of the above 
algorithm (Opper 1988). Essentially, Opper's idea is to write the stability A in terms of the 
number of time steps tl a certain example 1 has led to a change of the weight vector W and 
then search for the distribution of it that maximizes the stability. At any time, the weight 
vector can be written as W = ( I / N )  cf 

1 ' ( t )  sw'(t) = -vi 
N 

q ' so that the halting condition becomes 
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where xi = ti/c. In the limit c -+ CO, the xl are so as to maximize A = c/lWl or, 
equivalently, to minimize the Hamiltonian 

N ~1 
2A2 2N H = - = - Z  

The goal is to compute the probability density W ( X I )  for an arbitrary but fixed 1. Following 
Opper (1988) we introduce the characteristic function g(k) = (exp (ikxl)) where (. . .) stands 
for the averages over Sf and CL. In order to evaluate this function at the minima of H that 
satisfy constraint (7) we write 

where 

and O(x) = 1 for x t 0 and 0 otherwise. The averages are carried out using a standard 
replica trick to lift the denominator up to the numerator: 

with 2" evaluated for integer n. Using the integral representation of the Theta function and 
making a change of variables yields 

where a = 1, . , . , n is the replica index. In the thermodynamic l i t  N 4 00, g(k) can 
be calculated .exactly. Within the replica-symmetric framework we can express g(k )  in 
terms of eighteen saddle-point parameters which, however, can be reduced to only two by 
explicitly solving the saddle-point equations. As the calculations are straightforward and 
rather uniiluminating we only present the final result. The characteristic function is given 
by 

where 

m 
A = &A3 LA DtH,(ff) (t + A) 
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with the notation Dt = at/& exp(-t2/2) and H ( x )  = STDt. The saddle-point 
parameters A and R are solutions of the equations 

1 - R’ - 20! [ Y D t H  ( ( t )  (t + A)’ = 0 

and 

At this point we can already note that g ( k )  is independent of WO, a fact which has also 
been observed in the study of the equilibrium properties of real-weights neural networks 
(Gyiirgy and Tishby 1989, Meir and Fontanari 199%). 

The time needed to learn the P examples is T = zit[ so that (T) = caN(x,) ,  since 
w ( q )  is independent of the particular example I we pick. Thus the average total number 
of learning steps T is simply 

The storage capacity cr, of the network is obtained by setting A = 0 in the saddle-point 
equations (16). (17), as the divergence on the number of learning steps signals the saturation 
of the network. For sake of completeness we show in figure 1 the dependence of ac on the 
noise parameter y .  The same graph was also obtained in the equilibrium analysis of Gy6rgy 
and Tishby (1989). For y < 1 the algorithm of Krauth and MBzard presents a behaviour 
pattern very similar to the one found in the study of the random mapping problem (Opper 
1988). In particular, r diverges as (ac - for a + a* Figure 2 shows r as function of 
a for y = 0.1, 0.9 and 1. In the more interesting case of learning from noiseless examples 
( y  = 1) we find T w 0.649a2 for large a, thus implying that the convergence time increases 
quadracticalIy with the number of training examples. 

0.0 0.2 0.4 0.6 0.8 ~ 1.0 Figure 1. The storage capacity as function of the 
Y noise pa”. 
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As demonstrated by Opper (1988). even in the random mapping problem ( y  = 0) there 
exists a fraction Po of examples which are automatically learned when the network learns 
the remaining examples. This phenomenon should be more pronounced in the case y = 1 ,  
where the examples are generated by a deterministic rule. This piece of information can 
be obtained from the probability density w ( x )  = J(dk/Zx)g(k)e-~ which in OUT case is 
given by 

w ( x )  = S(X)PO +Z@(x)-  H [ t ( x  - m)/o] exp [-(x - m)z/zu*] (19) .Jz;T;;z 

where 

Po = 2 l :  DtH (Ct) m = A 2 / h  o = A j h .  (20) 

Figure 3 shows Po as function of 01 for several values of the noise parameter. For y = 1 we 
find 1 -PO x 0.990@-'. Thus, although the number of examples which are not automatically 
learned tends to zero as (Y increases, they seem to be extremely hard to learn as indicated 
by the divergence of the average learning time r .  

In summary, we have calculated the distribution of learning times of the optimal stability 
perceptron algorithm (Krauth and Mizard 1987) for the learning from noisy examples 
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problem. In particular, we find that in the case of noiseless examples the average total 
number of learning steps scales with a*, although the number of examples that must 
effectively be learned tends to zero as d. The results presented in this note arc exact, 
since the replica symmetric ansatz is stable for 01 < 0 1 ~ .  

J F Fontnnari and A Theumann 
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